我就废话不多说了,大家还是直接看代码吧~
b = torch.zeros((3, 2, 6, 6)) a = torch.zeros((3, 2, 1, 1)) a.expand_as(b).size() Out[32]: torch.Size([3, 2, 6, 6]) a = torch.zeros((3, 2, 2, 1)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-34-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 2. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 1] a = torch.zeros((3, 2, 1, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-36-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 1, 2] a = torch.zeros((3, 2, 2, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-38-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 2, 2] a = torch.zeros((3, 2, 6, 2)) a.expand_as(b).size() Traceback (most recent call last): File "/home/lart/.conda/envs/pt/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 3267, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-40-972575f79e92>", line 1, in <module> a.expand_as(b).size() RuntimeError: The expanded size of the tensor (6) must match the existing size (2) at non-singleton dimension 3. Target sizes: [3, 2, 6, 6]. Tensor sizes: [3, 2, 6, 2] a = torch.zeros((3, 2, 6, 1)) a.expand_as(b).size() Out[44]: torch.Size([3, 2, 6, 6]) a = torch.zeros((3, 2, 1, 6)) a.expand_as(b).size() Out[46]: torch.Size([3, 2, 6, 6])
tensor.expand_as在这里用于扩展tensor到目标形状,常用的多是在H和W方向上的扩展。
假设目标形状为N, C, H, W,则要求tensor.size()=n, c, h, w(这里假设N,C不变):
1、h=w=1
2、h=1, w!=1
3、h!=1, w=1
补充:tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度
在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。
比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。
tf.expand_dims()
tf.squeeze()
tf.expand_dims()
tf.expand_dims(input, axis=None, name=None, dim=None)
在第axis位置增加一个维度.
给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。
如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。
例子
# 't' is a tensor of shape [2] shape(expand_dims(t, 0)) ==> [1, 2] shape(expand_dims(t, 1)) ==> [2, 1] shape(expand_dims(t, -1)) ==> [2, 1] # 't2' is a tensor of shape [2, 3, 5] shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
tf.squeeze()
tf.squeeze(input, axis=None, name=None, squeeze_dims=None)
直接上例子
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 中国武警男声合唱团《辉煌之声1天路》[DTS-WAV分轨]
- 紫薇《旧曲新韵》[320K/MP3][175.29MB]
- 紫薇《旧曲新韵》[FLAC/分轨][550.18MB]
- 周深《反深代词》[先听版][320K/MP3][72.71MB]
- 李佳薇.2024-会发光的【黑籁音乐】【FLAC分轨】
- 后弦.2012-很有爱【天浩盛世】【WAV+CUE】
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】