知乎上有同学求助说,当他试图打开一个20M左右的excel文件时,无论是使用pandas的read_excel,还是直接使用xlrd或者openpyxl模块,速度都慢到无法忍受的程度,耗时大约1分钟左右。
真的会这样吗?第一感觉是,这位同学在使用openpyxl模块时没有设置只读模式。为便于测试,先用下面的代码生成一个一百万行数据的excel文件。
> from openpyxl import Workbook > wb = Workbook() > sh = wb.active > sh.append(['id', '语文', '数学', '英语', '物理']) > for i in range(1000000): # 写入100万行数据 sh.append([i+1, 90, 100, 95, 99]) > wb.save(r'd:\bigxlsx.xlsx') > import os > os.path.getsize(r'd:\bigxlsx.xlsx') # 文件大小:20M字节 20230528
接下来定义了一个使用openpyxl模块打开文件的函数,分别考察关闭和开启只读模式的时间消耗。
> from openpyxl import load_workbook > import time > def read_xlsx(read_only): t0 = time.time() wb = load_workbook(r'd:\bigxlsx.xlsx', read_only=read_only) t1 = time.time() print(wb.sheetnames) print(sh.cell(row=1, column=1).value) print(sh.cell(row=100, column=3).value) print('耗时%0.3f秒钟'%(t1-t0)) > read_xlsx(True) ['Sheet'] id 100 耗时0.404秒钟 > read_xlsx(False) ['Sheet'] id 100 耗时67.817秒钟
运行测试,果然,不开启只读的话,真的需要1分多钟,而使用只读模式的话,则仅需0.4秒钟。
不过,也别高兴得太早,openpyxl模块并没有提供像pandas.read_excel()那样把全部数据读入一个数据结构的功能,只能定位到行、列或格子以后再读取数据。要想使用openpyxl模块把全部数据读入到数组或DataFrame中,需要遍历所有的行和列,这仍然是一个非常耗时的操作。
那么,pandas.read_excel()是否也支持只读模式呢?遗憾的是,read_excel()并没有类似read_only这样的参数。尽管read_excel()可以接受文件路径、文件对象、类文件对象,甚至是二进制数据,但即使将文件内容传入,read_excel()解析这100万行数据仍然需要大约80秒钟。下面的代码验证了这一点。
> import pandas as pd > def read_excel_by_pandas(): with open(r'd:\bigxlsx.xlsx', 'rb') as fp: content = fp.read() t0 = time.time() df = pd.read_excel(content, engine='openpyxl') t1 = time.time() print(df.head()) print(df.tail()) print('耗时%0.3f秒钟'%(t1-t0)) > read_excel_by_pandas() id 语文 数学 英语 物理 0 1 90 100 95 99 1 2 90 100 95 99 2 3 90 100 95 99 3 4 90 100 95 99 4 5 90 100 95 99 id 语文 数学 英语 物理 999995 999996 90 100 95 99 999996 999997 90 100 95 99 999997 999998 90 100 95 99 999998 999999 90 100 95 99 999999 1000000 90 100 95 99 耗时81.369秒钟
结论:处理超大的Excel文件时,使用openpyxl模块的只读模式,可以快速打开并取得指定格子的数据,但不要尝试将全部数据读入到自己定义的数据结构中,这将花费漫长的时间。对此,pandas也无能为力。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 中国武警男声合唱团《辉煌之声1天路》[DTS-WAV分轨]
- 紫薇《旧曲新韵》[320K/MP3][175.29MB]
- 紫薇《旧曲新韵》[FLAC/分轨][550.18MB]
- 周深《反深代词》[先听版][320K/MP3][72.71MB]
- 李佳薇.2024-会发光的【黑籁音乐】【FLAC分轨】
- 后弦.2012-很有爱【天浩盛世】【WAV+CUE】
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】